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ABSTRACT 
 
Generation of surface meshes remains an active research problem despite the many publications addressing this topic. The main 
issues which must be treated by a good remeshing algorithm are: element quality, sizing control, approximation accuracy, robust-
ness and efficiency. One reason surface meshing is such a challenging problem is the fact that using the Euclidean metric to 
measure distances between points on the surface can generate large discrepancies between the original surface and the con-
structed mesh. We solve this problem by using geodesic distances on the surface. The ability to accurately and efficiently com-
pute geodesic distances, and propagate them across the mesh, permits us to generate quality surface meshes which closely ap-
proximate the input without using costly parameterization techniques. 
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1. INTRODUCTION 

3D models are used in applications ranging from animation and 
cinematography to heavy industry and scientific visualization. 
However, most existing surface mesh models can hardly even be 
called satisfactory.  Most of them are not sampled properly and 
their basic elements — triangles — have poor, almost random 
shapes because of the 3D mesh acquisition process. Whether this 
is done using interactive solid modeling software or semi-
automatically using a scanning device, it remains a tedious and 
error-prone procedure. Models generated by CAD software usu-
ally reflect regular sampling of the underlying parametric do-
main instead of the model features. The process of simplifying 
scanned models with millions of points is primarily concerned 
with preserving model geometry and topology and does not 
emphasize the quality of sampling and triangles. This results in 
meshes which usually cannot be used as-is for 3D applications. 
An intermediate step, correcting the basic mesh geometry and 
connectivity, while preserving features, is required. Such correc-
tions, commonly known as remeshing, are a fundamental com-
ponent in the field of digital mesh processing.  

Remeshing tries to accurately approximate the model geometry 
with well-shaped elements. It also adjusts the sampling rates 
locally to match the amount of detail present. High-quality 
meshes are necessary for engineers performing numerical com-
putations, such as finite element analysis that, for example, cal-
culate mechanical stress, solve heat and flow differential equa-
tions or simulate such systems. A high-quality mesh conditions 
the system well, eliminating numerical errors and singularities 
that might otherwise arise. Hence, within the engineering com-
munity the emphasis is on quality. The computer graphics and 
modeling community, on the other hand, is concerned with an-
other aspect of remeshing. Their focus is on the tradeoff be-
tween the visual quality of the result, the speed of the remeshing 
operation, and the optimization of the number of polygons in 
order to achieve interactive rendering speeds.   

Over the last decade, an abundance of remeshing algorithms 
have been proposed. One group of algorithms, e.g. [10,11], is 
based on partitioning the 3D mesh into patches, and treating 
each patch separately, usually with subdivision techniques. 
While these techniques yield reasonable results, they are very 
sensitive to the patch structure, and the vertex sampling (or dis-
tribution) is difficult to control. More recent remeshing algo-
rithms, e. g. [2,9,12,14] are based on global parameterization of 
the original mesh, followed by a resampling of the parameter 



 

 

domain. After this, the new triangulation is “projected” back 
into 3D space, resulting in an improved version of the original 
model. The main drawback of the global parameterization meth-
ods is the sensitivity of the result to the specific parameterization 
used. Embedding a non-trivial 3D structure in the parameter 
plane severely distorts this structure, and important information, 
which is not specified explicitly, may be lost on the way. Even if 
the parameterization minimizes the metric distortion of the 3D 
original in some reasonable sense, it is impossible to eliminate it 
completely. Moreover, global parameterization is very slow, 
usually involving the solution of a large set of (sometimes 
nonlinear) equations. Because of the size of the system, this 
solution may be numerically imprecise, especially in regions 
where the connectivity has bad isoperimetric ratios. These re-
gions correspond to protruding extremities in the 3D mesh (e.g. 
the legs of an animal), and they may be lost in the process. Ad-
ditionally, 2D parameterization requires the surface to be cut to 
a disk-like topology, both to parameterize closed surfaces or 
surfaces with genus higher than zero, and to reduce the paramet-
ric distortion. These cuts introduce visible artifacts in the mesh. 
The main alternative to global parameterization is to work di-
rectly on the surface. Remeshing algorithms using this approach 
[2,8,16,18] usually involve difficult, inefficient and limited op-
timizations in 3D. For example, Frey and Borouchaki [8] per-
form local modifications in the tangent plane. In a subsequent 
work, Frey [7] uses a paraboloid to obtain a better approxima-
tion of the surface. These complex approximations are ex-
tremely slow and not always robust.  

The common denominator of all the meshing algorithms is that 
they use Euclidean metrics, in the sense that the distance be-
tween points, even on the surface, is measured as the Euclidean 
distance between them. Since in most cases we should actually 
be using the geodesic distance, i.e. the distance between the 
points along the surface, this may introduce error culminating in 
distortion. The Euclidean distance may be considered a good 
approximation to the geodesic distances only at short ranges and 
in regions of low curvature. Otherwise it is quite different. 
Nonetheless, the published methods use Euclidean distances 
because they are much simpler to compute. 

Assuming a constant sizing function, the vertices of the new 
mesh should be positioned on the surface such that the distances 
along the surface between close vertices are approximately 
equal. One way of achieving this is to build a "front" of vertices 
which advances across the surface at uniform "velocity" [3,17]. 
The front forms strips of triangles as it advances. The main 
problem with this method is that the front may meet itself, hence 
split and merge as it propagates. This complicates matters sig-
nificantly, and a number of heuristics are required to control the 
process. The fact that Euclidean distances are employed here as 
well results in suboptimal results. Figure 1 shows the result of an 
advancing front technique implemented in a commercial pack-
age. The loss of high curvature features is a typical artifact. The 
result of applying our method on the same model with similar 
uniform sizing is shown in Figure 2(e). Due to these difficulties, 
advancing front techniques are not considered to be very attrac-
tive. 

 

Figure 1:  Horse model (left). Original (right). Advanc-
ing front remesh, produced by an anonymous com-
mercial mesh generator. Note how the details of the 
ears and hooves are lost. 

1.1   Our Contribution 
This work introduces a novel remeshing method which operates 
directly on the 3D surface in a manner similar to the "advancing 
front" methods. So on the one hand, it does not involve any 
costly parameterization methods. On the other hand, it avoids all 
the pitfalls of the existing advancing front methods. Firstly, it 
uses geodesic distances instead of Euclidean distances. Sec-
ondly, it does not have to deal with major topological changes in 
the advancing front. This is achieved by segmenting the mesh 
into regions such that the treatment of each region is relatively 
straightforward. This also allows us to process meshes with 
arbitrary topologies. 

2. ALGORITHM OVERVIEW 

Our mesh generation procedure avoids the need for costly planar 
parameterization by computing accurate geodesic distances di-
rectly on the surface. The geodesic distances are computed using 
the "fast marching on triangulated domains" technique of 
Kimmel and Sethian [13]. We provide a brief overview of the 
technique in Section 3.   

The basic meshing technique we use was first proposed by Adi 
[1]. It is based on generation of equidistant curves on the sur-
face. An equidistant curve is the locus of all points on the sur-
face at some fixed geodesic distance from a given point. Adi 
computed such equidistant curves from a single root point on the 
surface and then simply triangulated the strips between consecu-
tive curves. 

The difficulty with this simple approach, as with the advancing 
front techniques, is that equidistant curves may have complex 
topologies. The saddle regions where a single curve splits into 
several components can have arbitrary shape (Figure 2(a)). 
Without special treatment, the mesh in such regions will both 
disobey the sizing requirement and contain badly shaped trian-
gles (Figure 2(b)). Adi did not provide a satisfactory solution to 
these problems, hence he was able to generate good meshes only 
for very simple models. We avoid this pitfall by first segmenting 
the surface into regions, such that the distance function is mono-



 

 

tone inside each region and therefore does not contain saddle 
points. Once the regions and the equidistant curves inside them 
are computed, each strip between two adjacent equidistant 
curves is meshed using a Voronoi tessellation of vertices dis-
tributed on the two curves. The next four sections describe the 
main components of the algorithm: 

1. Computation of geodesic distances and equidistant curves.  
2. Mesh preprocessing. 
3. Segmentation into regions. 
4. Triangle generation within each region. 
 
The various stages of the algorithm are illustrated in Figures 2 
and 4.  

3. COMPUTING GEODESICS 

 
The easy, but inaccurate, way to compute a "geodesic" distance 
between two vertices of a triangle mesh surface is to run a short-
est-path algorithm on the mesh graph, where the weight associ-

ated with an edge is its length. Efficient algorithms, such as the 
Djikstra algorithm [15], can compute these path lengths very 
efficiently, but can be shown to produce paths quite different 
from true geodesic paths. This is because the geodesic path does 
not necessarily pass through the mesh vertices, rather takes 
shortcuts through edges. See Figures 3(a) and 3(b) for a com-
parison. In our work we utilize the "fast marching on triangu-
lated domains" algorithm of Kimmel and Sethian [13]. It com-
putes approximate geodesic paths between two vertices in 
O(nlogn) time per path (n is the number of vertices in the mesh). 
Unfortunately, this algorithm does not always guarantee a cor-
rect result, in particular when the mesh contains triangles with 
obtuse angles. Kimmel and Sethian offer a solution to this prob-
lem, but it is rather complex and not always correct. Alterna-
tively, the problem may be reduced by a preprocessing step 
which reduces the relative number of obtuse triangles in the 
mesh. The standard way of doing this is to refine the obtuse 
triangles so that most of the affected area is covered by smaller, 
but less problematic triangles. This is not guaranteed to remove 
all obtuse angles, but removing just the worst cases suffices to 
produce reasonably accurate geodesic distance computations. 
Fortunately, obtuse triangles do not occur so frequently, so the 

   
(a)  (b) (c) 

   
(d) (e) (f) 

Figure 2: The effect of mesh segmentation on geodesic remeshing with uniform sizing of the horse model of Figure 
1(a). (a) Geodesic curves and zoom on a saddle region. The root vertex is on the back left foot (marked by a star) (b) 
Resulting mesh with artifacts in saddle regions. (c) Segmented regions. The centers of leaf regions are highlighted by 
circles. (d) Geodesic curves formed with two-site distances on segmented mesh. Note that the saddle of (b) has 
disappeared. (e) Resulting mesh with no artifacts. (f) Mesh after post-processing. 



 

 

algorithm produces quite good results in general, even without 
these two workarounds, although we employ them both. 

The fast-marching method can also be adapted to non-uniform 
geodesic distances. The input may contain an arbitrary weight 
per vertex, where larger weights mean that the region surround-
ing that vertex is "harder" to pass through. The geodesics then 
take this information into account. This is a feature which is very 
useful to us, as we will see later.  

We use the fast-marching method to compute the equidistant 
curves. This is done by computing the geodetic distance from 
the source to all other vertices of the mesh. The equidistant 
curve is then formed by connecting linear segments between 
points on the edges at a given distance, these too interpolated 
linearly between vertex distances. This approximation is obvi-
ously not correct when large triangles are involved, since the 
equidistant curves will be quite different from what they should 
be. See Figure 3(c); the equidistant curves on a plane are not 
circles, as would be expected. Here too, a possible solution, 
which we adopted, is to refine the mesh to contain many smaller 
triangles, forcing the algorithm to output more detailed geodetic 
information. Obviously, this increases the computation complex-
ity. 

   
(a) (b) (c) 

Figure 3: Shortest paths between the two yellow verti-
ces. (a) Dijkstra. (b) Geodesic. (c) Equidistant curves 
based on geodesic distances. 

4. MESH PRE-PROCESSING 

Our meshing algorithm supports different sizing requirements on 
different regions of the mesh. Curvature-based sizing defined for 
each vertex is usually used to provide more accurate geometry 
approximation. Other per-vertex sizing data, such as those de-
rived from analysis requirements, can be incorporated similarly.  
This data is sent as input to the fast-marching method, which 
conveniently, is able to use it.  

We approximate the curvature at the mesh vertices using the 
method described in [5]. The sizing is then based on a combina-
tion of Gaussian and mean curvature. The relative weight of the 
two components is controlled by the user. In addition the user 
also controls the contrast or the gradient of the sizing gradation. 
This is achieved by transforming the sizing by some polynomial 
magnifying function. 

The required number of triangles determines the desired edge 
length in the case of uniform sizing. This in turn determines the 
distance between consecutive equidistant curves on the surface.  

This distance Cd is the desired edge length scaled by 4/3  (the 
ratio between the height and the side in an equilateral triangle).  

Now the root vertex for the distance computations is located. We 
compute the two vertices on the surface forming the maximal 
surface distance between them (the diameter) and select one of 
them as the root r. The computation of these two vertices is done 
using the following well known iterative procedure [6]: 

1. Set r to some arbitrary vertex. Set Dmax to zero. 
2. Find the farthest vertex t from r. Set Dt to the distance 

between r and t.  
3. If Dt > Dmax, set r := t, Dmax := Dt, and goto 2. 

This procedure is actually not guaranteed to find the mesh di-
ameter, as it might get stuck in a local minimum, but for rea-
sonably well-behaved meshes, this is rare. The root vertex r and 
the maximal distance Dmax are used in the following stage to 
segment the mesh into regions. Figures 2(a) and 4(b) show the 
root vertex and the equidistant curves surrounding it for the 
horse and cactus models. 

5. REGION SEGMENTATION 

Once the root vertex r is found we compute the geodesic dis-
tance D(v) from r to every other vertex v on the mesh. D(v) is 
then used to segment the mesh into regions to avoid mesh arti-
facts like those seen in Figure 2(b). The regions are constructed 
such that each equidistant curve within the region will be well-
behaved. To guarantee this, each region must be a simply con-
nected region. See Figures 2(c) and 4(f). 

The regions form a tree structure containing three types of re-
gion nodes: leaves, interior nodes, and a root. The distinction 
between different types of regions reflects the properties of the 
distance function D. Leaf regions are formed around the maxima 
of D. Interior regions roughly correspond to the saddle points of 
D, and the root region is formed around the root vertex r (the 
global minimum of D). The tree construction algorithm runs in 
two stages. First the topological structure of the tree (Figure 
4(e)) is determined, and then the mesh regions corresponding to 
each node are computed (Figure 4(f)).  

Tree structure construction: The set of vertices L which are 
the local maxima of D define the tree leaves (Figure 4(c)). Ini-
tially each leaf defines a degenerate tree consisting of a single 
node, producing a forest. A bottom up construction is performed 
with groups of trees connected by interior region nodes. Finally 
all the trees are joined into a single tree with a single root region 
node. 

The tree construction uses a front propagation procedure on the 
surface starting from the set of leaf vertices L. The front propa-
gation is based on the distance metric D. The fronts emanating 
from the leaf vertices are propagated so that at each step the 
vertex with smallest value of D is added to the front of the ap-
propriate leaf l. When two fronts meet at a vertex, an interior 
region node is added to the tree as the parent of the two leaves 
(Figure 4(d)). The vertex is stored for further processing. The 
two fronts are merged, and the new front continues to advance 
using the minimal distance D from among its leaves. Whenever 
two fronts meet, interior nodes are created joining the sub-trees 
(Figure 4(c)). When only one front remains, i.e. all the leaves are 
connected into a single tree, the root node is introduced as the 
common parent. At the end of this procedure a region tree  



 

 

  
   

 
(a) (b) (c) (d) (e) 

      
(f) (g) (h) (i) (j) (k) 

Figure 4: Algorithm stages. (a) Input cactus model. (b) Root vertex (highlighted by star) and curves equidistant from 
it. (c)-(e) Computing the region tree structure: (c) Maxima of distance from root. These are leaves of the region tree. 
(d) Propagating regions around maxima till regions 1 and 2 meet at interior region 4. (e) Continuing propagation of 
regions 4 and 3 until they meet at root region 5. (e) Resulting tree structure. (f) Resulting mesh regions. Regions 1, 2 
and 3 are leaves, region 4 is interior, and region 5 is the root. (g)-(i) Computing equidistant curves within the regions: 
(g) Propagating equidistant curves down regions 1 and 2. (h) Propagating equidistant curves down region 4. (i) Com-
plete set of strips. (j) Mesh after strip triangulation. (k) Final mesh after smoothing. 

structure (Figure 4(e)) is defined, but the boundaries of the re-
gions still need to be determined. 

Tree regions construction: The region boundary definition 
proceeds yet again bottom up, from the leaves to the root. When 
considering a region, the top of the region is defined as: 

• the center vertex l for a leaf region;  
• the boundary curve between the region and its children for 

an interior or root region. 

The region boundary construction proceeds as follows: 

While not all the boundaries have been constructed, find an inte-
rior node at which both the following hold: 

• the top boundary is not defined, 
• in both of its sub-trees the top boundaries are defined for 

all the nodes.  

Note that at the beginning of the procedure all interior nodes 
with two leaf children satisfy this condition. Let t1 and t2 be the 
tops of the root nodes of the sub-trees. The vertex v at which the 
fronts of the sub-trees meet is known from the tree structure 
construction stage above. We now use it to compute the top 
boundary of the interior node which is the parent of the two sub-
trees, as follows: 

 Compute the equidistant curve C at distance D(v) from the 
root r. Note that C will contain v. 

 Find two vertices v1 and v2 on C at minimal distance from t1 
and t2 respectively.  

 Compute the two equidistant curves C1 and C2 at distance 
Cd⋅D(t1,v1)/Cd from t1 and at distance Cd⋅D(t2,v2)/Cd 
from t2 respectively. This distance roundoff makes the dis-
tance from the tops of the two sub-tree root node regions to 
their bottom a multiple of Cd. It will result in an even curve 
distribution inside the regions at the meshing stage. 
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 Connect C1 and C2 into a “spectacles” shape using the 
shortest path between them which passes through v. This 
provides a single loop as the top boundary of the parent 
node. 

 The procedure is continued upwards inside the tree until all the 
region boundaries are computed. Figure 4(b)-(e) illustrates this 
procedure on the cactus model, resulting in the regions in Figure 
4(f). Figure 2(c) shows the regions for the horse model. Note 
that many leaf patches on the head and legs of the latter are gen-
erated around minor local maxima. As a result D(l,v)<Cd and the 
patch degenerates to its center vertex l.  

6.  MESH GENERATION 

We now proceed to place equidistant curves inside each region. 
The distance from the top of each leaf or interior region to its 
bottom is, by construction, a multiple of Cd. Hence curves can be 
spread evenly within each such region. Within the root region an 
error of up to Cd/2 can occur.  The algorithm spreads it equally 
during curve distribution by slightly increasing or decreasing the 
curve offset. This is illustrated in Figure 4(g)-(i). The equidistant 
curves constructed during this process are incorporated into the 
surface and used to generate the final mesh.  
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(e) (f) (g) (h) 
Figure 5: Meshing strips on the cactus model. (a) Sim-
ple strip. (b) Strip with original triangles and new 
mesh vertices (circles). (c) Voronoi cells with new ver-
tices as sites. (d) Dual Delaunay mesh. (e) "Specta-
cles" strip (f)-(h) Delaunay meshing. The T-junctions 
are marked by arrows.    
 
After the curves are computed the mesh can be generated using a 
final bottom-up sweep thru the tree. Starting from the leaves, 
vertices are distributed along each equidistant curve at edge 
length intervals. These curves are the boundaries of the strips 
(and spectacles). These vertices are added to the surface mesh 
(Figure 5(b) and 5(f)), When distributing vertices on spectacles 
they are first placed at the T-junctions, which are the meeting 
points of two or more equidistant curves (Figure 5(f)). The verti-
ces placed on the curve connecting these form vertices interior to 
the strip. The vertex placement is then adjusted to optimize the 
element shape. The final mesh is constructed by triangulating the 
strip between consecutive curves. To generate the triangles, the 
algorithm computes the Voronoi cells around each vertex using 

geodesic distances (Figure 5(c),(g)). The Delaunay triangulation 
dual to this Voronoi cell structure is computed and used as the 
mesh for the strip (Figure 5(d),(h)). The meshing stage can pre-
serve surface features by incorporating feature edges into the 
mesh (see the gear model in Figure 7). Feature edges are de-
tected using a dihedral angle criterion. The features are handled 
similarly to equidistant curves, with vertices distributed along 
them. Vertices are placed at intersections of feature edges with 
equidistant curves and the vertex distribution is adjusted accord-
ingly. When meshing the strips, each piece of a feature edge 
which falls inside a strip is handled as part of the strip. The re-
sulting strip triangulation contains both vertices distributed 
along the curves forming the strip and vertices distributed on the 
parts of feature edges overlapping the strip. 

Once all the strips are meshed, the resulting mesh (Figures 2(e) 
and 4(j)) can be improved further using standard smoothing and 
local edge flip techniques (resulting in Figures 2(f) and 4(k)). 
This final stage distributes the vertices better on the surface, 
removing the visual "lines" formed by vertices placed along the 
equidistant curves. Even though these techniques improve the 
mesh regularity, they cannot be used excessively as they also 
cause damage to the mesh fidelity to the original. 

7.  EXPERIMENTAL RESULTS 

We demonstrate the results of our remeshing method on several 
examples (in Figures 6 and 7). Figure 6 also compares to the 
result from the algorithm of [7]. The statistics for the resulting 
meshes are summarized in Table 1. 

The sizing gradation control is demonstrated on the Venus head 
model (Figures 6 and 7). Our algorithm can successfully mesh 
both smooth and CAD-type models with corners and creases, as 
demonstrated by the foot and gear models. The foot model also 
demonstrates our method’s ability to handle significant sizing 
gradations resulting from large variations in curvature across 
short distances.  

  

 
Figure 6: Remeshing methods comparison. All models 
contain approximately 5,400 vertices. (Left) Local 
technique [7]. (Right) Our method. The statistics for 
both appear in Table 1.  



 

 

The example models showcase the method's ability to correctly 
capture sock-like shapes such as the animal's legs without re-
quiring global parameterization. As is evident in the griffin and 
figure eight models, our method does not require any special 
treatment to handle models with genus greater than one. This, in 
addition to generating seamless meshes is yet another advantage 
of this technique over methods which utilize a parameter domain 
[2,9,12,14]. Our advantage over local methods [7] is in the mesh 
quality (Figure 6), with only a slight penalty in approximation 
error in some cases.  

Both approximation and quality measures are shown in Table 1. 
The quality is demonstrated by the statistics of the minimal an-
gle. The angles in the inputs are arbitrarily bad, but in most of 
the results, not many angles are less than 30o and the average 
angle is consistently above 50o. The statistics also include the 
Hausdorff distance from the original model measured using the 
Metro tool [4]. This is approximately 0.5% of the bounding box 
diagonal for most models, which is quite negligible. The superi-
ority of using geodesic distance based advancing front instead of 
classical advancing front techniques in terms of approximation is 
clearly demonstrated by the horse meshes in Figure 1.  

 
Input  

Angles (deg.) 
Result 

Angles (deg.) 
 Input 

size 
(#ver) 

Result 
size 

(#ver) 

Con
tras
t Min %<30 Avg. Min %<30 Avg. 

Appr
Error
(%)

Horse 19,851 2,205 0 1.60 24.9 35.8 22.9 0.14 51.5 1.48
Eight 766 985 0 21.4

0
37.7 47.9 32.9 0 51.9 0.48

Foot 10,016 5,421 0.5 2.07 27.7 37.7 10.0 0.63 51.2 0.27
Foot [7] 5,427 3.6 9.45 42.1 0.21
Venus 1 8,268 5,269 0 0.24 34.2 34.7 25.6 0.01 52.2 0.73
Venus 2 5,300 0.3 23.5 0.02 52.1 0.82
Venus 3 
(Figure 6) 

5,385 0.6 24.9 0.01 51.2 0.54

Venus [7] 5,319 0.24 23.81 37.4 0.21
Griffin 49,864 10,50

8
0.6 3.83 15.9 40.0 21.8 0.04 51.8 0.71

Dino 14,070 10,29
2

0.5 1.47 32.0 35.4 16.8 0.12 52.0 0.45

Camel 39,074 20,15
7

0.3
5

0.55 40.3 47.9 22.3 0.13 52.5 0.34

Gear 3,721 11,15
2

0 0.04 85.4 18.5 12.8 0.64 51.3 0.46

Tree 
(without 
segmenta-
tion) 

13,778 988 0 3.2 42.7 30.3 0.07 5.7 46.6 2.1

Tree (with 
segmenta-
tion) 

13,778 1,009 0 14.0 0.7 50.0 1.8

Table 1: Statistics on some remeshed models. Con-
trast indicates the impact of curvature on sizing. Ap-
proximation error measures the Hausdorff distance 
between the resulting mesh and the input as a percent 
of the bounding box diagonal.  

The advantage to doing mesh segmentation as opposed to none 
at all is illustrated on the tree model in Figure 8. The corre-
sponding statistics for the two results, as shown in Table 1, 
shows that the segmentation allows the algorithm to achieve a 
better result, both in terms of  mesh quality, and in terms of ap-
proximation quality. 

The run-time for the models varies between 60 seconds for the 
horse model to 600 seconds for the griffin on a 1.7 GHz Pentium 
4 PC with 512 MB RAM. The time reflects the input and output 
sizes as well as the level of complexity which determines the 
number of regions generated by the algorithm. As demonstrated 
by the examples, the main advantage of our method is the ability 
to generate the number of triangles desired by the user while 
simultaneously approximating the input well and generating 
high quality elements. 

8.  CONCLUSION 

We have presented an efficient remeshing method which oper-
ates directly on the model surface without resorting to any sort 
of parameterization. At the heart of our algorithm lies conven-
ient segmentation of the mesh according to geodesic distances. 
This allows us to incorporate any sizing function to control the 
distribution of mesh triangles. Each segment is meshed inde-
pendently, and the result delicately smoothed. The results seem 
to be superior on all the models we have tested. 

Future work will extend this method to mixed quad and triangle 
meshing, as well as pure quad meshing. 
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Figure Eight 

 

Dino 
Figure 7: Remeshes. Left: Input mesh. Middle: Remesh. Right: Zoom on remesh (except the Venus model which has a
different contrast). 
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Figure 7 (cont.): Remeshes. Left column is the input mesh. Middle is the remesh and right is a zoom. 
   
 
 
  
 
 
 
 



 

 

 

    
(a) (b) (c) (d) 

Figure 8: The effect of segmentation. The statistics of the results appear in Table 1. (a) Input tree mesh. (b) Remesh 
without segmentation. (c) Segments generated by our algorithm. (d) Remesh with segmentation. 
 


